0.05x+25+(125/x)=0

Simple and best practice solution for 0.05x+25+(125/x)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.05x+25+(125/x)=0 equation:



0.05x+25+(125/x)=0
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
0.05x+(+125/x)+25=0
We get rid of parentheses
0.05x+125/x+25=0
We multiply all the terms by the denominator
(0.05x)*x+25*x+125=0
We add all the numbers together, and all the variables
(+0.05x)*x+25*x+125=0
We add all the numbers together, and all the variables
25x+(+0.05x)*x+125=0
We multiply parentheses
0x^2+25x+125=0
We add all the numbers together, and all the variables
x^2+25x+125=0
a = 1; b = 25; c = +125;
Δ = b2-4ac
Δ = 252-4·1·125
Δ = 125
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{125}=\sqrt{25*5}=\sqrt{25}*\sqrt{5}=5\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-5\sqrt{5}}{2*1}=\frac{-25-5\sqrt{5}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+5\sqrt{5}}{2*1}=\frac{-25+5\sqrt{5}}{2} $

See similar equations:

| 15(5c-9)=7c-3 | | 36=(5x-11)•(x) | | 3x+2x-5=-15 | | 4x-1=6=-9+6x | | -22n-35n+-48n-3n=-38 | | -8d+-20=-92 | | 15=5+4(2d-5) | | M2-10m+16=0 | | 3n+2=-2n-1 | | 5−2(x+5)=30= | | 8x+9=17/ | | 61=2x+6 | | (2x+18)=(122x) | | 36=5x-11•x | | 8x9=17 | | -4.5x+1.3=16.7 | | 4d2+18d-10=0 | | 4x-10=126+12 | | 107g-6=-20 | | 3|2x-1|+5=20 | | q2+ 7=10 | | (122x)+(2x+18)=180 | | 0.067+x=0.139 | | -2(3n+6)-12=6 | | 4(h−16)=4 | | 2x(–3x–7)=0 | | 46+36+2-3x=180 | | 850+25x=650+30x | | C2-13c-30=0 | | 8x(11=6)= | | 12)-10=-x/5 | | 19=7+-4y |

Equations solver categories