If it's not what You are looking for type in the equation solver your own equation and let us solve it.
.6(m-30)=2/3m+20
We move all terms to the left:
.6(m-30)-(2/3m+20)=0
Domain of the equation: 3m+20)!=0We multiply parentheses
m∈R
0.6m-(2/3m+20)-18=0
We get rid of parentheses
0.6m-2/3m-20-18=0
We multiply all the terms by the denominator
(0.6m)*3m-20*3m-18*3m-2=0
We add all the numbers together, and all the variables
(+0.6m)*3m-20*3m-18*3m-2=0
We multiply parentheses
0m^2-20*3m-18*3m-2=0
Wy multiply elements
0m^2-60m-54m-2=0
We add all the numbers together, and all the variables
m^2-114m-2=0
a = 1; b = -114; c = -2;
Δ = b2-4ac
Δ = -1142-4·1·(-2)
Δ = 13004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13004}=\sqrt{4*3251}=\sqrt{4}*\sqrt{3251}=2\sqrt{3251}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-114)-2\sqrt{3251}}{2*1}=\frac{114-2\sqrt{3251}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-114)+2\sqrt{3251}}{2*1}=\frac{114+2\sqrt{3251}}{2} $
| 20d-3+11d=11d+5-8 | | 20d-3+11d=11+5-8 | | 11x+4=41 | | -13x+2x=52+23x | | 4x+14=-14-7x | | 20+m+30=20+2m | | 4+x+1=12-2x | | 4x+3=9x–12 | | 10=10x=-44+x | | 5x=1=x-7 | | 100y=3y+10000 | | 7+2.5=19-4x | | 18x)-36=90 | | 8(4r-5)-7r=5(3r-4) | | 6(m-3)+11=8m-3 | | 9x-5=-77 | | 0.4x-0.75x+0.5x=3 | | X(x-x^2)=0 | | 0.75x-0.5x=-3 | | 3(x+7)=2(3x+5) | | 8x-7=5(10-x)+3(x+1) | | 10+v2=28 | | 28=v2+10 | | 6^3x-5=1 | | x/3+9=24 | | 8x-5=3+19 | | 7/4b-2=-5 | | 3^x+1-3^x=54 | | 8w-15=49 | | 4.905t^2+39t-125=0 | | 2^(3x-4)+174=206 | | |2x+6|=6 |