.5x+1=-2/3x+15

Simple and best practice solution for .5x+1=-2/3x+15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for .5x+1=-2/3x+15 equation:



.5x+1=-2/3x+15
We move all terms to the left:
.5x+1-(-2/3x+15)=0
Domain of the equation: 3x+15)!=0
x∈R
We get rid of parentheses
.5x+2/3x-15+1=0
We multiply all the terms by the denominator
(.5x)*3x-15*3x+1*3x+2=0
We add all the numbers together, and all the variables
(+.5x)*3x-15*3x+1*3x+2=0
We multiply parentheses
3x^2-15*3x+1*3x+2=0
Wy multiply elements
3x^2-45x+3x+2=0
We add all the numbers together, and all the variables
3x^2-42x+2=0
a = 3; b = -42; c = +2;
Δ = b2-4ac
Δ = -422-4·3·2
Δ = 1740
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1740}=\sqrt{4*435}=\sqrt{4}*\sqrt{435}=2\sqrt{435}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-2\sqrt{435}}{2*3}=\frac{42-2\sqrt{435}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+2\sqrt{435}}{2*3}=\frac{42+2\sqrt{435}}{6} $

See similar equations:

| 6b-7+2b=5b+2 | | 3x-2=5+8/3 | | (x-5)^2=1 | | 19=4a+17 | | 38=2(b-44) | | 5/x=7/14= | | 17=2w+9 | | X^4=5+3x | | 8k^2+56k+98=0 | | 6x+3(x-22)=-129 | | 8=8.4÷x | | 3b–9=15 | | (2x+19)°=(x+7)° | | 5=20-d | | -8=-7+xx= | | 5P=20-d | | 4X+9=3x*3x-18 | | 15-3f=6 | | 5(2x4)-11=4+3x | | 2w^2+24w+72=0 | | 5x+4=6x+1 | | 2w2+24w+72=0 | | 5+4h=13 | | 5(4x-20)=18x-100+2x | | g-10=9 | | x+2.5=0.5 | | 10–g=9 | | w–8=−12 | | 2(b-5)=8 | | 144x2-48x+4=0 | | 8(-8x+6)=22 | | 8=2(b–5) |

Equations solver categories