.5*j*10=400/j

Simple and best practice solution for .5*j*10=400/j equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for .5*j*10=400/j equation:



.5j*10=400/j
We move all terms to the left:
.5j*10-(400/j)=0
Domain of the equation: j)!=0
j!=0/1
j!=0
j∈R
We add all the numbers together, and all the variables
.5j*10-(+400/j)=0
We get rid of parentheses
.5j*10-400/j=0
We multiply all the terms by the denominator
(.5j*10)*j-400=0
We add all the numbers together, and all the variables
(+.5j*10)*j-400=0
We multiply parentheses
10j^2-400=0
a = 10; b = 0; c = -400;
Δ = b2-4ac
Δ = 02-4·10·(-400)
Δ = 16000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{16000}=\sqrt{1600*10}=\sqrt{1600}*\sqrt{10}=40\sqrt{10}$
$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{10}}{2*10}=\frac{0-40\sqrt{10}}{20} =-\frac{40\sqrt{10}}{20} =-2\sqrt{10} $
$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{10}}{2*10}=\frac{0+40\sqrt{10}}{20} =\frac{40\sqrt{10}}{20} =2\sqrt{10} $

See similar equations:

| 4x-21=1x-18 | | 7x+29=6x-36 | | -4(-4y+1)-y=3(y-3)-3 | | 2/7y+3/8=1/7y+5/3 | | 10+(5x)=7x | | 92÷n=1150 | | 4x-18=1x-3 | | 1/3+4z=-5/6 | | -5u+2=-2(u+8) | | 5(2x+1)=8x+11 | | 144=3y | | 18=3/3x-3/2x | | 2x-10+x+20=90 | | (x-2)/5=1 | | 2.3=5.6+y | | 126=y*14 | | 4d+3=2-3(1) | | t4-3t2+7=5t3-9 | | -8z-22=3(3z+11-z | | -3/5y-1/7y=910y=676 | | D-3=c-7 | | 31x+14=4x-28 | | −x+7=−4x−20−4x−20 | | −x+7=  −4x−20−4x−20 | | 2(3x+5=5(2x-4)-4x | | -3/5y-1/7y=910y=610 | | 550x-728=108x+144 | | 7v-4/6=v-4/2 | | X-3+5=2x-8 | | X+x+2/5x=540 | | 13x+15=7x+52 | | 5x+4(3x-11)=7 |

Equations solver categories