.5(x+8)+3/2x=10

Simple and best practice solution for .5(x+8)+3/2x=10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for .5(x+8)+3/2x=10 equation:



.5(x+8)+3/2x=10
We move all terms to the left:
.5(x+8)+3/2x-(10)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We multiply parentheses
0.5x+3/2x+4-10=0
We multiply all the terms by the denominator
(0.5x)*2x+4*2x-10*2x+3=0
We add all the numbers together, and all the variables
(+0.5x)*2x+4*2x-10*2x+3=0
We multiply parentheses
0x^2+4*2x-10*2x+3=0
Wy multiply elements
0x^2+8x-20x+3=0
We add all the numbers together, and all the variables
x^2-12x+3=0
a = 1; b = -12; c = +3;
Δ = b2-4ac
Δ = -122-4·1·3
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{33}}{2*1}=\frac{12-2\sqrt{33}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{33}}{2*1}=\frac{12+2\sqrt{33}}{2} $

See similar equations:

| x/7-6=5/14 | | 2/7a+3/4=1 | | 5x²+35x=-30 | | (d+17)/2=5.3 | | F(x)=3/x-14 | | 6*3=(z*5)-(z*2) | | (2x+5)(4x^​2​​−10x+25)=0 | | A=9/2(h-77) | | 2x/5=3+x/3 | | 2x/5=3+x/5 | | 6x+4+6=16 | | (x+4)/5=(x-2)/7 | | 4+2.5x=6+2x | | 3(3v+8)=21 | | 5(2x-1)-10=235 | | 10y-8y-13=23.02 | | 15+17x=10.41 | | -6.6+3.2m=-3(-0.8m+3.8)+4 | | 2(3v+8=70 | | 2r-9(-2)=-8 | | -7(3x-4)=-21x-28 | | 2x+5=-3x+2 | | √3x+7=3x+5 | | 10x^2-11x-16=0 | | 13x^2-10x-5=0 | | 2w/100=2 | | √3x+√7=3x+5 | | 0=x^2+x-18 | | 213=-7-4(1-8x) | | 8x^2+125=0 | | -5(6x-8)=-30x-40 | | 27-x^2=6x |

Equations solver categories