.5(6x-10)+(1/3)(6+9x)=0

Simple and best practice solution for .5(6x-10)+(1/3)(6+9x)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for .5(6x-10)+(1/3)(6+9x)=0 equation:



.5(6x-10)+(1/3)(6+9x)=0
Domain of the equation: 3)(6+9x)!=0
x∈R
We add all the numbers together, and all the variables
.5(6x-10)+(+1/3)(9x+6)=0
We multiply parentheses
3x+(+1/3)(9x+6)-5=0
We multiply parentheses ..
(+9x^2+1/3*6)+3x-5=0
We multiply all the terms by the denominator
(+9x^2+1+3x*3*6)-5*3*6)=0
We add all the numbers together, and all the variables
(+9x^2+1+3x*3*6)=0
We get rid of parentheses
9x^2+3x*3*6+1=0
Wy multiply elements
9x^2+54x*6+1=0
Wy multiply elements
9x^2+324x+1=0
a = 9; b = 324; c = +1;
Δ = b2-4ac
Δ = 3242-4·9·1
Δ = 104940
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{104940}=\sqrt{36*2915}=\sqrt{36}*\sqrt{2915}=6\sqrt{2915}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(324)-6\sqrt{2915}}{2*9}=\frac{-324-6\sqrt{2915}}{18} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(324)+6\sqrt{2915}}{2*9}=\frac{-324+6\sqrt{2915}}{18} $

See similar equations:

| |12x|=|3x-45| | | 4(2x-9)+8=-12 | | -x-50+5x=26 | | 4(2x-9)=8=-12 | | (4x-1)=-4 | | -12=u-21 | | 5x-1+31=87 | | 4(6-5a)-6(1-a)=-38 | | 16-2x=8+4x-12 | | 4(2x-3)=2(3x+4) | | 6.5y-9.1=5.2 | | (1/x)=24 | | 7(v-8)=-35 | | 7x-4=12x+3x | | 8.2c-18=0 | | -14x-222-2x=82 | | 17n+51+8=6 | | 4(3x-3)+49=6x+1 | | 5x^2-20x-13=0 | | -2(x-1)-7(1+x)=13 | | -121-2x+9x=110 | | 9x-90-x=190 | | -25+8n=3(5+6n) | | -3(3b+2)=57 | | 7x+40=3x+112​ | | -10x-47+5x=78 | | 2r+S=11r-S=2 | | |x+4|=2x+1 | | 180=4x+5 | | 75=-8(6n-4)+5(3+4n) | | 6.5a=3.25 | | 4x+15=2x+40 |

Equations solver categories