.4=(x*x)+1.34x

Simple and best practice solution for .4=(x*x)+1.34x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for .4=(x*x)+1.34x equation:



.4=(x*x)+1.34x
We move all terms to the left:
.4-((x*x)+1.34x)=0
We add all the numbers together, and all the variables
-((+x*x)+1.34x)+.4=0
We add all the numbers together, and all the variables
-((+x*x)+1.34x)+0.4=0
We calculate terms in parentheses: -((+x*x)+1.34x), so:
(+x*x)+1.34x
We add all the numbers together, and all the variables
1.34x+(+x*x)
We get rid of parentheses
1.34x+x*x
Wy multiply elements
x^2+1.34x
Back to the equation:
-(x^2+1.34x)
We get rid of parentheses
-x^2-1.34x+0.4=0
We add all the numbers together, and all the variables
-1x^2-1.34x+0.4=0
a = -1; b = -1.34; c = +0.4;
Δ = b2-4ac
Δ = -1.342-4·(-1)·0.4
Δ = 3.3956
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1.34)-\sqrt{3.3956}}{2*-1}=\frac{1.34-\sqrt{3.3956}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1.34)+\sqrt{3.3956}}{2*-1}=\frac{1.34+\sqrt{3.3956}}{-2} $

See similar equations:

| 7/10-3x=3x+1/10 | | 3.377.000+0,16x=x | | -x^2+16x-50=0 | | N(t)=400(2+3t+t+2) | | x²-12x+36=169 | | 100+0,5x=x | | 4/t+7=2 | | 200-5x=20.x | | 4*t+7=2 | | 5x+10=45-2x | | 410+14=c | | 3/x+5=2 | | 7p^2+15p=0 | | x-(=75)=25 | | 122-x=206 | | 3x-6+6=54 | | 7p^2+11p+4p=0 | | 7-3x=3x+10 | | -8+10k=52 | | |3x-6|+6=54 | | 100=-16t^2-96t+12 | | 6x-1=x-13 | | 10=(5h+4)= | | 12x2^-240x+900=0 | | y+19/5=8 | | 34+9=c | | 4x-5=6-3x | | 2x^2+x-1/x^2-1=0 | | 2x^2+x-1/x^2-1=0. | | 10+14=c | | 5(5q+2)=3(5q+2)= | | 2x^2+4x-320=0 |

Equations solver categories