.25x-2=-6+5/12x

Simple and best practice solution for .25x-2=-6+5/12x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for .25x-2=-6+5/12x equation:



.25x-2=-6+5/12x
We move all terms to the left:
.25x-2-(-6+5/12x)=0
Domain of the equation: 12x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
.25x-(5/12x-6)-2=0
We get rid of parentheses
.25x-5/12x+6-2=0
We multiply all the terms by the denominator
(.25x)*12x+6*12x-2*12x-5=0
We add all the numbers together, and all the variables
(+.25x)*12x+6*12x-2*12x-5=0
We multiply parentheses
12x^2+6*12x-2*12x-5=0
Wy multiply elements
12x^2+72x-24x-5=0
We add all the numbers together, and all the variables
12x^2+48x-5=0
a = 12; b = 48; c = -5;
Δ = b2-4ac
Δ = 482-4·12·(-5)
Δ = 2544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2544}=\sqrt{16*159}=\sqrt{16}*\sqrt{159}=4\sqrt{159}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-4\sqrt{159}}{2*12}=\frac{-48-4\sqrt{159}}{24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+4\sqrt{159}}{2*12}=\frac{-48+4\sqrt{159}}{24} $

See similar equations:

| .45x=9000 | | 36=25+v | | 89+10p=-10p-51 | | x^2+8x−3=0 | | 5(7y)-8(3y)=20*11 | | 24k+132=24k=144 | | 14n=24=-6n-4 | | 107=-7d+9 | | 3x+x-15=9 | | 15n=42 | | 5n-16=45-54n | | -2=5+y/2 | | 6y−5=49 | | 2x+21=5x-21 | | 5(y+3)=-3(2y-4) | | (3x+5)*(2x+6)=0 | | 25-k=48 | | 19x+26=x-2 | | X-9.10=7x+1.8 | | 3x-3.4=17.6+10x | | 6=3(2m-1) | | |2x+1|=|-4+1| | | x.2.3=25 | | 27^(-x+3)=81 | | 16y+23=119 | | -18n=-540 | | w-3/6+w+5/11=7/33 | | 2x+6-4(x+1)=4x+7 | | 2(3x-4)=6x+2,x | | x0,65^(x-1)=18/7 | | 1/x+1/4x=20 | | 180=5x+(x+20)+2x |

Equations solver categories