If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-x2+7x-10=0
We add all the numbers together, and all the variables
-1x^2+7x-10=0
a = -1; b = 7; c = -10;
Δ = b2-4ac
Δ = 72-4·(-1)·(-10)
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-3}{2*-1}=\frac{-10}{-2} =+5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+3}{2*-1}=\frac{-4}{-2} =+2 $
| 3(2x-1)-4(x+2)=2(x+5) | | x^2+60x+459=0 | | 4x+20=9x+63 | | 6m^2-23m+10= | | 1/5x+3+1/2x=2x-10 | | 80=-2q+q^2 | | 8d-3=4d+17 | | 6m^2-23m+10=0 | | 1-12x=29+8x | | y2+20y=100 | | 3-2v=43+3v | | x+(2-5x)/4=x | | 21x-17=-4 | | 5d-12=8 | | 2x3-3x2+6x+6=0 | | -x²+4x+5=4x | | 3+e=9e-53 | | 4(2x+8)-3x(x+4)=5 | | (2x+1)(3x-5)+(8x+3)(2x+1)=0 | | 2x+2-15x-5=30 | | 4/3=10/3x+1/2 | | 1,414x^2+2,236x+1,732=0 | | s+4s-21=0 | | -13x=33 | | 5-x^2=16 | | 6(x+2)=2(x+3)+4x | | x^2-1,732x-4=0 | | ((x+1)/5)-((3x+1)/2)-3=0 | | 2x^-12x=0 | | (x+5)^2=9 | | 2x+x+(3x+24)=3258 | | 6/9*y=6 |