-x+3=(5)/(2)x-4

Simple and best practice solution for -x+3=(5)/(2)x-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -x+3=(5)/(2)x-4 equation:



-x+3=(5)/(2)x-4
We move all terms to the left:
-x+3-((5)/(2)x-4)=0
Domain of the equation: 2x-4)!=0
x∈R
We add all the numbers together, and all the variables
-1x-(5/2x-4)+3=0
We get rid of parentheses
-1x-5/2x+4+3=0
We multiply all the terms by the denominator
-1x*2x+4*2x+3*2x-5=0
Wy multiply elements
-2x^2+8x+6x-5=0
We add all the numbers together, and all the variables
-2x^2+14x-5=0
a = -2; b = 14; c = -5;
Δ = b2-4ac
Δ = 142-4·(-2)·(-5)
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{39}}{2*-2}=\frac{-14-2\sqrt{39}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{39}}{2*-2}=\frac{-14+2\sqrt{39}}{-4} $

See similar equations:

| 5+9j+10=9j-11 | | (12x-1)°+(11x+2)°=180 | | 3x-2x+5=-8 | | -6+8x-6x=-10 | | n+6=-24+4n | | X+9/x=2.5 | | (13+9+x)/3=10.5 | | 4n+3(2n+6)=10n | | 3×+12°+2x-2°=90° | | 60=6x-4(-x+15 | | n+6=-24=4n | | 8x-7x=+8 | | -x^2-6x-11=2x^2+12x+16 | | -17-20t+19t=-t-17 | | 13+9+x=10.5 | | (6x+8)+(5x+8)+(98)=180 | | 11k^2-36k+3=6k^2-4 | | 3x+15=-3x-30 | | -8+5+4q=4q-3 | | m+4=12-3m | | 2/7a=-36 | | 5/7r=13/14 | | -5s+20=-5(s-4) | | 45+29.50x=90+0.70x | | 4+m=2(m+1) | | -7a-13=-14 | | x/4+x/8=3/15 | | 30+13m=50+11m | | 2(x-5)-6x=30 | | 20h-18=-6+8h+12h | | 4x-13=2×+9 | | 12.25+x+6=19.08 |

Equations solver categories