If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-x+(3/2)(x+6)=3
We move all terms to the left:
-x+(3/2)(x+6)-(3)=0
Domain of the equation: 2)(x+6)!=0We add all the numbers together, and all the variables
x∈R
-x+(+3/2)(x+6)-3=0
We add all the numbers together, and all the variables
-1x+(+3/2)(x+6)-3=0
We multiply parentheses ..
(+3x^2+3/2*6)-1x-3=0
We multiply all the terms by the denominator
(+3x^2+3-1x*2*6)-3*2*6)=0
We add all the numbers together, and all the variables
(+3x^2+3-1x*2*6)=0
We get rid of parentheses
3x^2-1x*2*6+3=0
Wy multiply elements
3x^2-12x*6+3=0
Wy multiply elements
3x^2-72x+3=0
a = 3; b = -72; c = +3;
Δ = b2-4ac
Δ = -722-4·3·3
Δ = 5148
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5148}=\sqrt{36*143}=\sqrt{36}*\sqrt{143}=6\sqrt{143}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-6\sqrt{143}}{2*3}=\frac{72-6\sqrt{143}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+6\sqrt{143}}{2*3}=\frac{72+6\sqrt{143}}{6} $
| 0=3b | | x^2-6+140=180 | | 2x+(2x+3.5)=45 | | 17=-12+t | | x+41/2=6 | | -3n+10=-2n | | -8(3x+6)=4-x | | 6+(3y+4)=17 | | -3(x+4)=-3(x+2)-6 | | -(3x/8)=-(15/32) | | 32x+2+33x+2=180 | | 25t+.5t^2=0 | | 8m-5.5=12.5 | | 13x+3+12=180 | | 13x+3+12=90 | | 7y-15=-29 | | 2x+6=5-6 | | 45=21+4x | | -10a+50=−90 | | 48p+12=3p-12 | | -105x+192=-970 | | (10)2(x-4)+2x=6x-2 | | 5t=10/17 | | 6m-36=8m-24 | | r/5+3=28 | | 48p+12=3p-23 | | 4×+2y=14 | | X-23=1o | | -8x-3-2x=11 | | 12-2y+2y=12 | | 1x+143=135 | | 0.21-0.03(x+1)=0.01(2-x) |