-7=2/z+1

Simple and best practice solution for -7=2/z+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -7=2/z+1 equation:



-7=2/z+1
We move all terms to the left:
-7-(2/z+1)=0
Domain of the equation: z+1)!=0
z∈R
We get rid of parentheses
-2/z-1-7=0
We multiply all the terms by the denominator
-1*z-7*z-2=0
We add all the numbers together, and all the variables
-8z-2=0
We move all terms containing z to the left, all other terms to the right
-8z=2
z=2/-8
z=-1/4

See similar equations:

| (y/15)+42=38 | | 2r^2+3r-1=0 | | 3x-20=3(10-x) | | x(x-15)=18 | | 2x^2+7x+2=00 | | -3r-12=-5+r | | 4.7+d=-3 | | x+8^2+10=-50 | | 4p+20=2(4p-2) | | 3(1-d=2-(2d+4) | | 8x-7=4(2x+3) | | 5/x=10/x+1 | | (3,47*t+7,25*10^-4*(t-298)^2-(0,121*10^5)/t-993,456)*457,27+(5,457*t+5,225*10^-4*(t-298)^2+(1,157*10^5)/t-2014,441)*332,56+(3,28*t+2,965*10^-4*(t-298)^2-(0,04*10^5)/t-964,017)*2660,48+(3,639*t+2,53*10^-4*(t-298)^2+(0,227*10^5)/t-1160,5965)*143,8322=460644 | | -4(u-5)=-2u+40 | | (3,47*t+7,25*10^-4*(t-298)^2-(0,121*10^5)/t-993,456)*457,27+(5,457*t+5,225*10^-4*(t-298)^2+(1,157*10^5)/t-2014,441)*332,56+(3,28*t+2,965*10^-4*(t-298)^2-(0,04*10^5)/t-964,017)*2660,48+(3,639*t+2,53*10^-4*(t-298)^2+(0,227*10^5)/t-1160,5965)*143,8322=460644 | | 2x^2+48=12 | | 0=50-(1.9xD) | | 4(z-2)=-8+4z | | -4/3x+2=3x-11 | | (3,47*t+7,25*10^-4*(t-298)^2-(0,121*10^5)/t-993,456)*457,27+(5,457*t+5,225*10^-4*(t-298)^2+(1,157*10^5)/t-2014,441)*332,56+(3,28*t+2,965*10^-4*(t-298)^2-(0,04*10^5)/t-964,017)*2660,48+(3,639*t+2,53*10^-4*(t-298)^2+(0,227*10^5)/t-1160,5965)*143,8322=460644 | | 4(c-2)+3=2+c-7 | | 15y2+11y+2=0 | | 21-3x=88 | | 17=-13=9x | | 12x+38=6x-175 | | 7+m=11m-10(m+3 | | 24=-8x+3(x-2) | | .5x+.25(50)=26.5 | | (5b-4)(b+3)=0 | | 2x^2+14x-390=0 | | 2x²+14x-390=0 | | 7x+5÷2=13 |

Equations solver categories