-7/8x+1=3/4x-2

Simple and best practice solution for -7/8x+1=3/4x-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -7/8x+1=3/4x-2 equation:



-7/8x+1=3/4x-2
We move all terms to the left:
-7/8x+1-(3/4x-2)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
Domain of the equation: 4x-2)!=0
x∈R
We get rid of parentheses
-7/8x-3/4x+2+1=0
We calculate fractions
(-28x)/32x^2+(-24x)/32x^2+2+1=0
We add all the numbers together, and all the variables
(-28x)/32x^2+(-24x)/32x^2+3=0
We multiply all the terms by the denominator
(-28x)+(-24x)+3*32x^2=0
Wy multiply elements
96x^2+(-28x)+(-24x)=0
We get rid of parentheses
96x^2-28x-24x=0
We add all the numbers together, and all the variables
96x^2-52x=0
a = 96; b = -52; c = 0;
Δ = b2-4ac
Δ = -522-4·96·0
Δ = 2704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2704}=52$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-52)-52}{2*96}=\frac{0}{192} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-52)+52}{2*96}=\frac{104}{192} =13/24 $

See similar equations:

| -8b-10=-9b-3 | | j-(-18)=43 | | 4x-8-2x=14 | | (2)/(3)(6x+6)=4x+4 | | 3x-2=x-64 | | 1.2c+5=-4 | | 7x-1=18x-23 | | –9d+7=–10d | | 4(r-6)=2r-8 | | -12=-9-j/3 | | -8x-48+3=-45 | | 30h-10.5h=138 | | s16+14=11s= | | 6x+12-6x=18 | | 9-y=2y-9 | | 9m+5=32 | | 21=x/4-14 | | 9=n/2-6 | | 10t=21+3t | | -x^2+3x-10x=-2 | | 8b-5=8b | | 775=50x+25 | | 57+x+25+45=180 | | 81=5(3x+3)-4x | | 5y=8y-18 | | 2x+x-2+54=180 | | (8x-4)3x+6x=102 | | 57+x+45+25=180 | | 5(t+1)=5T= | | 5+7t=7t | | 3x-5x-(2x-6)=8x-2(9x-6) | | -2(x^2-25)(x^2+16)=0 |

Equations solver categories