(8x-4)3x+6x=102

Simple and best practice solution for (8x-4)3x+6x=102 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (8x-4)3x+6x=102 equation:



(8x-4)3x+6x=102
We move all terms to the left:
(8x-4)3x+6x-(102)=0
We add all the numbers together, and all the variables
6x+(8x-4)3x-102=0
We multiply parentheses
24x^2+6x-12x-102=0
We add all the numbers together, and all the variables
24x^2-6x-102=0
a = 24; b = -6; c = -102;
Δ = b2-4ac
Δ = -62-4·24·(-102)
Δ = 9828
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9828}=\sqrt{36*273}=\sqrt{36}*\sqrt{273}=6\sqrt{273}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6\sqrt{273}}{2*24}=\frac{6-6\sqrt{273}}{48} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6\sqrt{273}}{2*24}=\frac{6+6\sqrt{273}}{48} $

See similar equations:

| 57+x+45+25=180 | | 5(t+1)=5T= | | 5+7t=7t | | 3x-5x-(2x-6)=8x-2(9x-6) | | -2(x^2-25)(x^2+16)=0 | | 5x=4x-5x | | X^2-5x+12,x=3 | | 2j-8=2j | | I=12.6r^2 | | 6x+5x=-10 | | -4=x-2=3 | | 1/2(4x-14)=8 | | 0.9x1.8=162 | | 7(x-5)=-41-15 | | 5^x=80 | | -4/13m-7=6 | | 5=5*w | | 77+(4x-33)=180 | | 7=v/8+3 | | 25+5x-7=0 | | 0=(t-5)^2-9 | | 2x=-22+2 | | 15c^2-16c+3=c^2 | | 13-y=268 | | −13=−56+w | | 36r^2+3=19 | | 14=h/2 | | 4(k+-44)=-100 | | 19=2v-5 | | 3(x+4)-14=28 | | X+4-6x=2+x | | -12+8a-5+6=7+5a |

Equations solver categories