-7/3x-1/3=1/4x-3

Simple and best practice solution for -7/3x-1/3=1/4x-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -7/3x-1/3=1/4x-3 equation:



-7/3x-1/3=1/4x-3
We move all terms to the left:
-7/3x-1/3-(1/4x-3)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 4x-3)!=0
x∈R
We get rid of parentheses
-7/3x-1/4x+3-1/3=0
We calculate fractions
(-28x)/108x^2+(-27x)/108x^2+(-4x)/108x^2+3=0
We multiply all the terms by the denominator
(-28x)+(-27x)+(-4x)+3*108x^2=0
Wy multiply elements
324x^2+(-28x)+(-27x)+(-4x)=0
We get rid of parentheses
324x^2-28x-27x-4x=0
We add all the numbers together, and all the variables
324x^2-59x=0
a = 324; b = -59; c = 0;
Δ = b2-4ac
Δ = -592-4·324·0
Δ = 3481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{3481}=59$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-59)-59}{2*324}=\frac{0}{648} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-59)+59}{2*324}=\frac{118}{648} =59/324 $

See similar equations:

| 1/9v-3/7=2/7v-1/4 | | 15x+4(-3x+)=-13 | | 3(2x+5)-5=17-5 | | -2/3=-1/2u-9/5 | | w/6=6/9 | | 3/4m+6=54 | | -11.2=6.3+u/7 | | (-2)(1-3x)=22-3(x-13) | | 93-106=-8(-4y)-17(2y)+y | | -3m-2=16-1 | | -3m-2m=16-1 | | 20/6+t/4=3 | | 38=43-3(4-3w) | | 16x^2=36x | | 6x+x=9-23 | | 6/20+4/t=3 | | y=4.25-20 | | S/s+2+s=5s+8/s+2 | | 7(y-4)=-30 | | 5.25+4.65x=6.25+4.25x | | -6x-7x+34=-10x-20 | | X^2-2x=6x-16 | | 15-16y=1 | | (x+2)/9=14 | | -22.8=-3.6+x/6 | | 6x-9=-12x-5 | | 36n+12=84 | | 2/2x=2/1x+20 | | 695-150+32=x | | 13+y=9 | | -47-2x=-16 | | 28x-5=90 |

Equations solver categories