-7/3x+1/2=-7/6x-1

Simple and best practice solution for -7/3x+1/2=-7/6x-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -7/3x+1/2=-7/6x-1 equation:



-7/3x+1/2=-7/6x-1
We move all terms to the left:
-7/3x+1/2-(-7/6x-1)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 6x-1)!=0
x∈R
We get rid of parentheses
-7/3x+7/6x+1+1/2=0
We calculate fractions
108x^2/72x^2+(-168x)/72x^2+84x/72x^2+1=0
We multiply all the terms by the denominator
108x^2+(-168x)+84x+1*72x^2=0
We add all the numbers together, and all the variables
108x^2+84x+(-168x)+1*72x^2=0
Wy multiply elements
108x^2+72x^2+84x+(-168x)=0
We get rid of parentheses
108x^2+72x^2+84x-168x=0
We add all the numbers together, and all the variables
180x^2-84x=0
a = 180; b = -84; c = 0;
Δ = b2-4ac
Δ = -842-4·180·0
Δ = 7056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{7056}=84$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-84)-84}{2*180}=\frac{0}{360} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-84)+84}{2*180}=\frac{168}{360} =7/15 $

See similar equations:

| 4-16s=-10 | | 25-x=31 | | 13-6x=-(x-3) | | 20x+7=360 | | -9(x+6)=-7x-34 | | 21z+17=-25 | | 2/3(-12+(6x-9))=-18 | | 2w+2-7(-2w-1)=6(w-1) | | X/4-3x/2=4 | | 6v-22=-4(1-6v) | | 3x+12=2x-22=180 | | 20x+7=5x-2 | | -6(-3y+5)-9y=5(y-4)-8 | | {8x-4}{4}+4=3x | | x-10x=-36 | | -3x-4=7x+8 | | 1/5b-16=12 | | 4(3x+2)=-5(3x-5)+4x | | -4(u-5)=2u+2 | | 30+2p=6(p+1) | | 1/4-3x/2=4 | | 1/2x=18=2 | | 4(7+m)=16+m | | 21+v/4=-25 | | x+0.07x=632 | | 13(x-36)=-64 | | -6y+8=-2(y-2) | | 2x+5/3=4 | | 5(4x+2)=-3(5x-4) | | 3+x-23=28 | | 64+x+x134=180 | | -1=7x-5/12 |

Equations solver categories