If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-61x=(8x+3)(x-1)
We move all terms to the left:
-61x-((8x+3)(x-1))=0
We multiply parentheses ..
-((+8x^2-8x+3x-3))-61x=0
We calculate terms in parentheses: -((+8x^2-8x+3x-3)), so:We add all the numbers together, and all the variables
(+8x^2-8x+3x-3)
We get rid of parentheses
8x^2-8x+3x-3
We add all the numbers together, and all the variables
8x^2-5x-3
Back to the equation:
-(8x^2-5x-3)
-61x-(8x^2-5x-3)=0
We get rid of parentheses
-8x^2-61x+5x+3=0
We add all the numbers together, and all the variables
-8x^2-56x+3=0
a = -8; b = -56; c = +3;
Δ = b2-4ac
Δ = -562-4·(-8)·3
Δ = 3232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3232}=\sqrt{16*202}=\sqrt{16}*\sqrt{202}=4\sqrt{202}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-56)-4\sqrt{202}}{2*-8}=\frac{56-4\sqrt{202}}{-16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-56)+4\sqrt{202}}{2*-8}=\frac{56+4\sqrt{202}}{-16} $
| 9+k=35 | | 30=-8w+6(w+7) | | w/3=w/4-2 | | -4x+7/3=-1/5x-7/5 | | 12t-4(t+3)=15 | | 2x³+5x²-8x-20=0 | | x2+12x+35=0/ | | q+41=6q-12 | | y-4/5=-1/2 | | 13-4b=b-27 | | 3(−x−3)+x−3= −24 | | 46-3x=18+11x | | 8a-11=1+2a | | 4x-2(x+2)=24 | | 6x+1=0.8x-1.5 | | 10x+3+2x=9+3(2x-10) | | -2x-11=-9x-3 | | -16+8x=2(7x+7) | | (12n-8)=28 | | 6x+7x-40=100-7x | | x/8=3x/4 | | -34+4v=-7(v+8) | | P-3+2p=84 | | -(6+x)-7x=-38+8x | | 3x-5+x-1=7x-2-27 | | -15+x=2(x-6) | | 7x+5x-21=42-9x | | 2+3n=4+4(1+n) | | 2t-5(t-3)=-30 | | 3y+10=10=5y+3 | | 2(1/2x)=(2)x(22) | | 2(5x+4)=10x=6 |