If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-6/7k+2/9=5-3/2k
We move all terms to the left:
-6/7k+2/9-(5-3/2k)=0
Domain of the equation: 7k!=0
k!=0/7
k!=0
k∈R
Domain of the equation: 2k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
-6/7k-(-3/2k+5)+2/9=0
We get rid of parentheses
-6/7k+3/2k-5+2/9=0
We calculate fractions
56k^2/1134k^2+(-972k)/1134k^2+1701k/1134k^2-5=0
We multiply all the terms by the denominator
56k^2+(-972k)+1701k-5*1134k^2=0
We add all the numbers together, and all the variables
56k^2+1701k+(-972k)-5*1134k^2=0
Wy multiply elements
56k^2-5670k^2+1701k+(-972k)=0
We get rid of parentheses
56k^2-5670k^2+1701k-972k=0
We add all the numbers together, and all the variables
-5614k^2+729k=0
a = -5614; b = 729; c = 0;
Δ = b2-4ac
Δ = 7292-4·(-5614)·0
Δ = 531441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{531441}=729$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(729)-729}{2*-5614}=\frac{-1458}{-11228} =729/5614 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(729)+729}{2*-5614}=\frac{0}{-11228} =0 $
| 8(n-9)+8=32 | | 4x+(-2)=18 | | 5x-10+2=-(x+8) | | -2y^2-13y+15=0 | | (x-9)=15 | | -11=9+5z | | M+5/8m+3/5m=801 | | 5w-16=39 | | 14.5-2.5k=-6.5+4.5k | | (6^2x-8)(6^x+12)=0 | | 9=9/10g | | 9n-12=36 | | 11=h-1 | | 23=6r−7 | | 11z=19 | | 1-2x+6=11 | | 7(x-1)+2=-10(×-6)-1 | | 4x-21=39 | | 15-u=2u | | 0=3.49(x^2)+x-4.64 | | 15+16=1c | | 11w=6w+15 | | 5v=29 | | -7/4v-7/3=3v-3/4 | | 4/9x-2=1/6-1/9x | | 8p-7=2p+23 | | 3(u-5)=-3u-27 | | 2(3x-5)=1x+3 | | 12(y-3)=5(2y-7) | | 3/5x=34 | | 39=-6x+3(x+7) | | 2s=1.8 |