If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-6/5u-7/3=7/3u-1
We move all terms to the left:
-6/5u-7/3-(7/3u-1)=0
Domain of the equation: 5u!=0
u!=0/5
u!=0
u∈R
Domain of the equation: 3u-1)!=0We get rid of parentheses
u∈R
-6/5u-7/3u+1-7/3=0
We calculate fractions
(-162u)/135u^2+(-35u)/135u^2+(-35u)/135u^2+1=0
We multiply all the terms by the denominator
(-162u)+(-35u)+(-35u)+1*135u^2=0
Wy multiply elements
135u^2+(-162u)+(-35u)+(-35u)=0
We get rid of parentheses
135u^2-162u-35u-35u=0
We add all the numbers together, and all the variables
135u^2-232u=0
a = 135; b = -232; c = 0;
Δ = b2-4ac
Δ = -2322-4·135·0
Δ = 53824
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{53824}=232$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-232)-232}{2*135}=\frac{0}{270} =0 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-232)+232}{2*135}=\frac{464}{270} =1+97/135 $
| 26+4x=12 | | 45=(6x+5) | | 19683^x=81 | | 45=6x+5 | | (w-9)^2=9/16 | | 9x2+35=3x2+131 | | 2(20)/(5.27^2)=g | | -2(v+4)=5v-7+2(4v+2) | | 4((d+5)(d+5))=100 | | 2x2-22=50 | | -11=x-(-2) | | 14040x/50=12500x/20 | | x2+7x-28=0 | | -6y-16=2(y-4) | | –83u–24=7u+3909u= | | 14040/50x=12500/20x | | -12=4(u-7)-6u | | 9x^2-108x-172=0 | | (n+1)(n+1)=1440 | | 2x-29+1x+12+1x+5=180 | | n^2+3n+2=1440 | | 81=27^x+2 | | 19x-10+60=180 | | 39.99+.45x=44.99+.44x | | 15a+3=18 | | 6s-4=8(2+14s) | | 1.2=0.5x-1+0.3(-x-2) | | 23x+2+100=180 | | 8÷4y= | | 12.5x+30=-7.5+90.5 | | 3^4x-5=1/27^2x+10-5 | | 5c+2+96=180 |