(n+1)(n+1)=1440

Simple and best practice solution for (n+1)(n+1)=1440 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (n+1)(n+1)=1440 equation:



(n+1)(n+1)=1440
We move all terms to the left:
(n+1)(n+1)-(1440)=0
We multiply parentheses ..
(+n^2+n+n+1)-1440=0
We get rid of parentheses
n^2+n+n+1-1440=0
We add all the numbers together, and all the variables
n^2+2n-1439=0
a = 1; b = 2; c = -1439;
Δ = b2-4ac
Δ = 22-4·1·(-1439)
Δ = 5760
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5760}=\sqrt{576*10}=\sqrt{576}*\sqrt{10}=24\sqrt{10}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-24\sqrt{10}}{2*1}=\frac{-2-24\sqrt{10}}{2} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+24\sqrt{10}}{2*1}=\frac{-2+24\sqrt{10}}{2} $

See similar equations:

| 2x-29+1x+12+1x+5=180 | | n^2+3n+2=1440 | | 81=27^x+2 | | 19x-10+60=180 | | 39.99+.45x=44.99+.44x | | 15a+3=18 | | 6s-4=8(2+14s) | | 1.2=0.5x-1+0.3(-x-2) | | 23x+2+100=180 | | 8÷4y= | | 12.5x+30=-7.5+90.5 | | 3^4x-5=1/27^2x+10-5 | | 5c+2+96=180 | | 3−7x=−11 | | n+0=⅓ | | 2x+-4=-12 | | -40x+8-20x+3-15x+9=180 | | 3x2+75=150 | | -40x+8+-20x+3+-15x+9=180 | | 16/19=x/450 | | 37/10=m+25/6+1/5 | | 4.7x+3.8=13.8 | | 4x2+13=12x | | 10x+102=5x+87 | | 7x−23=4 | | 3(4g+1)–g=8–(3g+2) | | -4t^2+40t-100=0 | | 7j+3j-4j=12 | | 1x+26+1x+14+4x-10=180 | | -9.7=-3.3+w/4 | | 2y=y+8y= | | 30p/4=30 |

Equations solver categories