If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5x^2+3=0
a = -5; b = 0; c = +3;
Δ = b2-4ac
Δ = 02-4·(-5)·3
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{15}}{2*-5}=\frac{0-2\sqrt{15}}{-10} =-\frac{2\sqrt{15}}{-10} =-\frac{\sqrt{15}}{-5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{15}}{2*-5}=\frac{0+2\sqrt{15}}{-10} =\frac{2\sqrt{15}}{-10} =\frac{\sqrt{15}}{-5} $
| -20+6x=x | | 4x+x-3=3x+8-4x+6x | | -9(-8-6x)=396 | | X^2+7x-5=x+4 | | -.40x+22=40 | | 2(x+5)+3x=-(-4+8) | | 9(8d-5)=+13=12d-2 | | 8=16+18n | | 5-3v=-7 | | 7x2+6x=0 | | -9+18=4z-5z | | 8x²+40x=48 | | 5x-4+1=5(x+1)+3 | | (1/4.8)=(1/x)+(1/4) | | f(7)=4 | | 3x=9-8x+-31 | | G(x)=47 | | -84=8w-4 | | -29+23=-6b+8b | | 2x^2+5x–27=0 | | 5/2x+550=25x | | -10x2-9x+1=0 | | 8(v-4)=-40 | | 3w-8w=-3+28 | | -3d+5=44 | | 3x-8=3(x+2)-2 | | 8x+17=169 | | 27x-5=10x | | (2x+1)²=4(x-1)+x-1 | | 4n+10=2n=2 | | 9x2+2x-3=0 | | 5/3x+1/3x=21/2/3+7/3x |