If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-10x^2-9x+1=0
a = -10; b = -9; c = +1;
Δ = b2-4ac
Δ = -92-4·(-10)·1
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-11}{2*-10}=\frac{-2}{-20} =1/10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+11}{2*-10}=\frac{20}{-20} =-1 $
| 8(v-4)=-40 | | 3w-8w=-3+28 | | -3d+5=44 | | 3x-8=3(x+2)-2 | | 8x+17=169 | | 27x-5=10x | | (2x+1)²=4(x-1)+x-1 | | 4n+10=2n=2 | | 9x2+2x-3=0 | | 5/3x+1/3x=21/2/3+7/3x | | -111-15=-2(7x+7) | | 1/2y^-71=22 | | F(x)=29.99x+50,0x250 | | 12x-1+7x+9=180 | | 4(0)-2x=28 | | X=-14+2(3(x-1)) | | 2z=3.4 | | 1/10(x+34)=2(4-x) | | (2)/(3)x+x+(3)/(4)x+35=180 | | X=-3+3x+9 | | 52+7x=178 | | a=-14+1/3 | | 54=-3(6)j | | y^+8=33 | | (x+15)=125 | | (10)=-1.5x | | -n+18=n | | -15=5a+12-2a+16 | | 13x-(5x+11)=-13 | | M=2.5h+15 | | 10-7-m=-3 | | 4x-31+81=180 |