If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5x^2+2x=0
a = -5; b = 2; c = 0;
Δ = b2-4ac
Δ = 22-4·(-5)·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2}{2*-5}=\frac{-4}{-10} =2/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2}{2*-5}=\frac{0}{-10} =0 $
| 0.8x-18=1.4x-21 | | 9x2+12x+4=0 | | 8z+2-3z=10+4z-9 | | .07x=56 | | 4/7=28/x | | 1/4x+7=1/3x-8 | | 4^x-2=64 | | 4^5-3x=1/256 | | 2x+20=2x+10 | | 13h=14 | | x(x+7)=x+7 | | 1/2•c-8=4 | | 4^5-3x=1/156 | | |x|=-2 | | 84(y-15)=y+55 | | 6^x=1 | | 7x^2+x-60=0 | | 13(d+6)=195 | | 84(y-15)=y-(-55) | | 3(-2x-3)=-6(3x-2) | | 15(3/b)=45/b | | -(5y+3)-(-4y-7)=0 | | 2/5(40x+10)-17=-1/3(27x-18) | | 18=0.5x(x) | | x2-16x+32=0 | | 6x2+60x+150=0 | | 4.5+-1.5(6m+2)=6 | | 1/10x+15=1/15x+10 | | X/2=3+x30/5 | | X-2/5=x/12+5/4 | | 9r-6r+5=7r+5-r | | 25^5x+2=125^3x |