-4y(y+3)-3y=2(y+3)

Simple and best practice solution for -4y(y+3)-3y=2(y+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4y(y+3)-3y=2(y+3) equation:



-4y(y+3)-3y=2(y+3)
We move all terms to the left:
-4y(y+3)-3y-(2(y+3))=0
We add all the numbers together, and all the variables
-3y-4y(y+3)-(2(y+3))=0
We multiply parentheses
-4y^2-3y-12y-(2(y+3))=0
We calculate terms in parentheses: -(2(y+3)), so:
2(y+3)
We multiply parentheses
2y+6
Back to the equation:
-(2y+6)
We add all the numbers together, and all the variables
-4y^2-15y-(2y+6)=0
We get rid of parentheses
-4y^2-15y-2y-6=0
We add all the numbers together, and all the variables
-4y^2-17y-6=0
a = -4; b = -17; c = -6;
Δ = b2-4ac
Δ = -172-4·(-4)·(-6)
Δ = 193
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-\sqrt{193}}{2*-4}=\frac{17-\sqrt{193}}{-8} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+\sqrt{193}}{2*-4}=\frac{17+\sqrt{193}}{-8} $

See similar equations:

| x/8=6/19 | | -7.2x+3.5=8.7x-10 | | 182=118-u | | 1/2x+3=-19 | | N+n+n=357 | | 2+40x=18 | | 3x+8=1+(2x-5) | | -8-8y=-64 | | 1156=17x | | -3(8p+1)=-39-6p | | 4x+5x-12=180 | | 7x+15=2(3x+8x | | 2(y–7)=4 | | 34=p-(-6) | | 5x-2=10(x-3) | | 5x-6-2x=x+4 | | 25=x^2-2 | | x+185=180 | | (5.2*2)+2.75r=11.7 | | 0.05m+16.95=22.95+0.02m | | -8-5y=64+3y | | 180=(14x-2)+(12x+16) | | 4-5x=8-2x | | 2x+7=9x7- | | 10-37=6a+51 | | 19-a=-15 | | 22x-8=102 | | 15=x/27 | | x2+-5=5 | | 3(x-2)+2x+4=8 | | -2+3x-2=6x-4-3x | | 0.99x+25=39.85 |

Equations solver categories