-4x(2x-4)=2(2x-1)

Simple and best practice solution for -4x(2x-4)=2(2x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4x(2x-4)=2(2x-1) equation:



-4x(2x-4)=2(2x-1)
We move all terms to the left:
-4x(2x-4)-(2(2x-1))=0
We multiply parentheses
-8x^2+16x-(2(2x-1))=0
We calculate terms in parentheses: -(2(2x-1)), so:
2(2x-1)
We multiply parentheses
4x-2
Back to the equation:
-(4x-2)
We get rid of parentheses
-8x^2+16x-4x+2=0
We add all the numbers together, and all the variables
-8x^2+12x+2=0
a = -8; b = 12; c = +2;
Δ = b2-4ac
Δ = 122-4·(-8)·2
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{13}}{2*-8}=\frac{-12-4\sqrt{13}}{-16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{13}}{2*-8}=\frac{-12+4\sqrt{13}}{-16} $

See similar equations:

| 136+k=180 | | 4-8x+5+10x=21 | | 8=5x+2x-3x | | 34=28-2/3y | | -2/3p-3= | | 2(x+4)/4-8=32 | | 10z-z=-2+32-1-15 | | -2(a-8)-8=-2-2(a-5) | | -84+6x=-45 | | -4.9r+19.63=-19.5-12.5r-15.59 | | 9+7x=13+6x | | -8=-17+m | | 2(x-5)+2x=4(x+6)-34 | | 3(s +4) =3 | | 9b−11=–4+8b | | f +17/–1 = –4 | | 3/5y-6=-3 | | (7x+4)/(3x-5)=2/3 | | -3(z-18)=9 | | 2y+10=23 | | 8p-10=34 | | 4(x+9)=10(x-9) | | 3(c+4=5c+14 | | 4(x+1)-7x=10 | | 17/5x-4=-2x+21/20 | | 3(x-7)=-7x=39 | | 35x²+17x-36=0 | | (3x-5)/2=(6x+1)/3 | | 14=w4+ 12 | | 5/7q=35 | | 2(g-18)=-6 | | 52=7(h-2)+7 |

Equations solver categories