-40+2n=4n-8n(n+8)

Simple and best practice solution for -40+2n=4n-8n(n+8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -40+2n=4n-8n(n+8) equation:



-40+2n=4n-8n(n+8)
We move all terms to the left:
-40+2n-(4n-8n(n+8))=0
We calculate terms in parentheses: -(4n-8n(n+8)), so:
4n-8n(n+8)
We multiply parentheses
-8n^2+4n-64n
We add all the numbers together, and all the variables
-8n^2-60n
Back to the equation:
-(-8n^2-60n)
We get rid of parentheses
8n^2+60n+2n-40=0
We add all the numbers together, and all the variables
8n^2+62n-40=0
a = 8; b = 62; c = -40;
Δ = b2-4ac
Δ = 622-4·8·(-40)
Δ = 5124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5124}=\sqrt{4*1281}=\sqrt{4}*\sqrt{1281}=2\sqrt{1281}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(62)-2\sqrt{1281}}{2*8}=\frac{-62-2\sqrt{1281}}{16} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(62)+2\sqrt{1281}}{2*8}=\frac{-62+2\sqrt{1281}}{16} $

See similar equations:

| ++96=x+96 | | 24-3j=12 | | 8x+6x=8x+4x=12x | | X+2x-17=360 | | 7(x+5)-1=2(x-3)+x | | x+(-66)=180 | | 26=7b+12 | | ((1)/(64))^(0.5x-3)=8^(9x-2) | | 10x+11x+105=180 | | X+3x+x+10=180 | | 3m-6=10+m | | 8x+6=-6+2x+24 | | 3/4x-14=-2 | | (5x-17)=17 | | 13=-4y-7 | | 13-13q=4-2q | | 4x+8=4(x=2) | | (2x+5)+55=180 | | 5x+6+9x=14x+4 | | 67=7q-24 | | 10-2x=19x=2-5x | | 7(8-x)=5(9-x)+19 | | -13=5x+27 | | 9x+2=-5+6x+16 | | 66=16-5x | | 4+7x+3-x=x-8 | | 29=-8a-3 | | -4-(-2)=-4x | | 2=v-2/2 | | -4y+1=-2 | | t-t+4t=20 | | x+75=50+3x |

Equations solver categories