-4(v+3)=-14(v2-4v)

Simple and best practice solution for -4(v+3)=-14(v2-4v) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4(v+3)=-14(v2-4v) equation:



-4(v+3)=-14(v2-4v)
We move all terms to the left:
-4(v+3)-(-14(v2-4v))=0
We add all the numbers together, and all the variables
-(-14(+v^2-4v))-4(v+3)=0
We multiply parentheses
-(-14(+v^2-4v))-4v-12=0
We calculate terms in parentheses: -(-14(+v^2-4v)), so:
-14(+v^2-4v)
We multiply parentheses
-14v^2+56v
Back to the equation:
-(-14v^2+56v)
We get rid of parentheses
14v^2-56v-4v-12=0
We add all the numbers together, and all the variables
14v^2-60v-12=0
a = 14; b = -60; c = -12;
Δ = b2-4ac
Δ = -602-4·14·(-12)
Δ = 4272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4272}=\sqrt{16*267}=\sqrt{16}*\sqrt{267}=4\sqrt{267}$
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-4\sqrt{267}}{2*14}=\frac{60-4\sqrt{267}}{28} $
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+4\sqrt{267}}{2*14}=\frac{60+4\sqrt{267}}{28} $

See similar equations:

| -3/4g=12 | | m-3=22 | | 47=-x | | -4(v+3)=-14(v2-4v | | 1/4(5x-6)=X+6/8 | | 8x+5=4×+29 | | 76=5v4 | | 10+17y=-6+15y | | 13+37=-5(4x-36) | | 10+17y=-6+157 | | 76=5v-4 | | x-30=(3x)-14 | | 9x+-5=22 | | 7u=5u+18 | | 4(x+6)=6+24 | | 4(2x+7)=-16+36 | | 2/5=w+1/4 | | 3-5p=-32 | | 8(1-4x)+5=-208 | | 2(3x+8)=-46=44 | | 2x(2x-x)-6=3(8-4) | | 2(x-8)-3(x+2)=-25 | | 3(10-x)=-3+30 | | 2(5x+8)=-44+30 | | 2x+11=x=4 | | 2x(2x-x)-6=3 | | 7m+8=61 | | X-1+7=2x | | 4c/4=10/4 | | -4+x+6=2x-5 | | X+10+x+14=14 | | -7m+4+7m=4 |

Equations solver categories