2x(2x-x)-6=3(8-4)

Simple and best practice solution for 2x(2x-x)-6=3(8-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(2x-x)-6=3(8-4) equation:



2x(2x-x)-6=3(8-4)
We move all terms to the left:
2x(2x-x)-6-(3(8-4))=0
We add all the numbers together, and all the variables
2x(+x)-6-(34)=0
We add all the numbers together, and all the variables
2x(+x)-40=0
We multiply parentheses
2x^2-40=0
a = 2; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·2·(-40)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*2}=\frac{0-8\sqrt{5}}{4} =-\frac{8\sqrt{5}}{4} =-2\sqrt{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*2}=\frac{0+8\sqrt{5}}{4} =\frac{8\sqrt{5}}{4} =2\sqrt{5} $

See similar equations:

| 2(x-8)-3(x+2)=-25 | | 3(10-x)=-3+30 | | 2(5x+8)=-44+30 | | 2x+11=x=4 | | 2x(2x-x)-6=3 | | 7m+8=61 | | X-1+7=2x | | 4c/4=10/4 | | -4+x+6=2x-5 | | X+10+x+14=14 | | -7m+4+7m=4 | | 1/8(3t-8)=t+8/16 | | 3+2x+32=x+24 | | 5p^2+5p-9=0 | | -1=-3/2(3x+1)-3/2 | | x=6(-0.25/2) | | (0.10)(0.5) + 0.35g = 0.15(g + 0.5) | | 5x+1+2=8x | | 64-(-8-1)=256x+96 | | 5x+15-15=40 | | X+2x-19=17 | | 9+5b=2b+9 | | 6m—m=5/6(6m-10) | | 6x-5+3x+9=67 | | 2x-2+2x-6=8 | | 2x+24+4=x+19 | | 3+2n=5n+6 | | 5(4n+4)=2(5n-3)+11n | | 8+x+3=2x+11 | | 10b-18=11 | | -0.5x+2=-2x-5 | | 6x=8x+0.25 |

Equations solver categories