-4(9x-20)-3x=4/5x-6

Simple and best practice solution for -4(9x-20)-3x=4/5x-6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -4(9x-20)-3x=4/5x-6 equation:



-4(9x-20)-3x=4/5x-6
We move all terms to the left:
-4(9x-20)-3x-(4/5x-6)=0
Domain of the equation: 5x-6)!=0
x∈R
We add all the numbers together, and all the variables
-3x-4(9x-20)-(4/5x-6)=0
We multiply parentheses
-3x-36x-(4/5x-6)+80=0
We get rid of parentheses
-3x-36x-4/5x+6+80=0
We multiply all the terms by the denominator
-3x*5x-36x*5x+6*5x+80*5x-4=0
Wy multiply elements
-15x^2-180x^2+30x+400x-4=0
We add all the numbers together, and all the variables
-195x^2+430x-4=0
a = -195; b = 430; c = -4;
Δ = b2-4ac
Δ = 4302-4·(-195)·(-4)
Δ = 181780
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{181780}=\sqrt{4*45445}=\sqrt{4}*\sqrt{45445}=2\sqrt{45445}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(430)-2\sqrt{45445}}{2*-195}=\frac{-430-2\sqrt{45445}}{-390} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(430)+2\sqrt{45445}}{2*-195}=\frac{-430+2\sqrt{45445}}{-390} $

See similar equations:

| 10-2x=4x-14 | | k-(-30)=36 | | 11x+9=170 | | -5b=6-4b | | 4(2x-7)/2x=-10 | | 3n-4+7n=-24 | | 5u=4u+8 | | 2x-8x-13=-6x+4-13 | | w+14=w | | (6x+12)+54=180 | | -20(x-16)=20 | | 9x+3=68 | | (3/5(x+2)=x-4 | | 4(4x+3)=19x+9−3x+3 | | 8h+9-9h=-h | | 5-2x+3+x-4=2x+7 | | -6w+10=4w | | 8=27-k | | 128+1b=180 | | -6+6w=-1+7w | | 3n-4+7n=-4 | | 7n+10=2n+25 | | 3(5m+13)=9(8m+17) | | x-27=x+79 | | -19-x=-5 | | 6.2=x-3.4 | | 0.75x-0.5=2+0.125x | | 3f+3f-5=4f-8 | | -9d+7=-8 | | 2(y-7)-6y=-34 | | 117+1b=180 | | m-(-24)=36 |

Equations solver categories