If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3x^2-31x-64=0
a = -3; b = -31; c = -64;
Δ = b2-4ac
Δ = -312-4·(-3)·(-64)
Δ = 193
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-\sqrt{193}}{2*-3}=\frac{31-\sqrt{193}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+\sqrt{193}}{2*-3}=\frac{31+\sqrt{193}}{-6} $
| 6x-5(2x)=-16 | | -6x-22=-130 | | 7/4=20/6x+5 | | 10x²+207x-63=0 | | X2=10-3x1-x2+10-3x=10 | | 2/3(2x+6)=3x+9 | | 100(2x+5)=784+56x+x^2 | | .67x=10x | | 91=n+18 | | 40-10x=18 | | 5(m-3+2m=27 | | 2790=r60+1155 | | 2a-1+4=5 | | 1/2(3x+1+63)=180 | | x^-(3/7)=1/5 | | 3(6x-5)+1=18x | | -7y-8y=-58 | | 8a+40/4*8a^2/2a^2+30a=100 | | 0=4.9t^2+4t+15 | | (2x+1)(2x+1)-(x-13)=3x^-2x+2 | | 6z+6-z=5+4z+6 | | X^2+24x-328=0 | | 12m+50=74.99 | | 12m+50=62 | | (2x-1)=-10(x-5) | | j-+3j+2=-14 | | 1/8x+1/2x=2/5 | | 5(1/3+c)=21/2 | | -9(x)=x/3+4 | | 5(1/2+c)=21/2 | | (9+y)*11=121 | | -5/4x+2/5=13/30 |