If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3x^2+48=0
a = -3; b = 0; c = +48;
Δ = b2-4ac
Δ = 02-4·(-3)·48
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*-3}=\frac{-24}{-6} =+4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*-3}=\frac{24}{-6} =-4 $
| 1/5x-5/8=3/4 | | 12/t+36=−5 | | h/9+1=10 | | 12,6b+49-7,2b=-24,6b-4,1 | | 7p^-38p-24=0 | | 3x2-2x=14 | | p-1.8=30 | | 3-10b=25-9 | | 6=2^x | | 2x-57=180 | | 9x+2=(-92) | | 0.25x=256 | | 33.8=z+12.2 | | 4x-37-5=-14x+18 | | 4,7+9b=20b+1,8-b | | 3f−1=2 | | 57+3x=180 | | 20000-4x=19050+0.5x | | 33.8=z+12.2- | | 3/8x+7=-7/8 | | -2(5e-4)=5e-7+e | | 1/16(x−24)=6+x | | (2x-2)=6(x+2) | | W(4+w)=96 | | 750+50x=100x | | x-5(2)=1 | | x-5(2)=14 | | 1,6b-4,9+0,4b=3,5+0,8b-3,8 | | 17=y+5- | | 82+3x+1=180 | | x+0.2=21.6 | | 750+50=100x |