If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-2x=14
We move all terms to the left:
3x^2-2x-(14)=0
a = 3; b = -2; c = -14;
Δ = b2-4ac
Δ = -22-4·3·(-14)
Δ = 172
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{172}=\sqrt{4*43}=\sqrt{4}*\sqrt{43}=2\sqrt{43}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{43}}{2*3}=\frac{2-2\sqrt{43}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{43}}{2*3}=\frac{2+2\sqrt{43}}{6} $
| p-1.8=30 | | 3-10b=25-9 | | 6=2^x | | 2x-57=180 | | 9x+2=(-92) | | 0.25x=256 | | 33.8=z+12.2 | | 4x-37-5=-14x+18 | | 4,7+9b=20b+1,8-b | | 3f−1=2 | | 57+3x=180 | | 20000-4x=19050+0.5x | | 33.8=z+12.2- | | 3/8x+7=-7/8 | | -2(5e-4)=5e-7+e | | 1/16(x−24)=6+x | | (2x-2)=6(x+2) | | W(4+w)=96 | | 750+50x=100x | | x-5(2)=1 | | x-5(2)=14 | | 1,6b-4,9+0,4b=3,5+0,8b-3,8 | | 17=y+5- | | 82+3x+1=180 | | x+0.2=21.6 | | 750+50=100x | | x+22=30- | | 2(x-4)=2x+-10+2 | | 3(2x+4)=10(x+4) | | 8^-2n=16 | | 0.2x−0.7=1.7 | | 3x+4x+12=180 |