-3x(3x-7)=-2(x+4)+1

Simple and best practice solution for -3x(3x-7)=-2(x+4)+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3x(3x-7)=-2(x+4)+1 equation:



-3x(3x-7)=-2(x+4)+1
We move all terms to the left:
-3x(3x-7)-(-2(x+4)+1)=0
We multiply parentheses
-9x^2+21x-(-2(x+4)+1)=0
We calculate terms in parentheses: -(-2(x+4)+1), so:
-2(x+4)+1
We multiply parentheses
-2x-8+1
We add all the numbers together, and all the variables
-2x-7
Back to the equation:
-(-2x-7)
We get rid of parentheses
-9x^2+21x+2x+7=0
We add all the numbers together, and all the variables
-9x^2+23x+7=0
a = -9; b = 23; c = +7;
Δ = b2-4ac
Δ = 232-4·(-9)·7
Δ = 781
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-\sqrt{781}}{2*-9}=\frac{-23-\sqrt{781}}{-18} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+\sqrt{781}}{2*-9}=\frac{-23+\sqrt{781}}{-18} $

See similar equations:

| (24x-24)-(-16x+-16)=-24 | | 8r+8=38r+13 | | 1212y=10y-10 | | 6(p+5)=66 | | 14x+17=2(x+3)(x+3)-5 | | 6u+12=-6 | | 8-(-3x+1)=-23(x+1) | | 5x+17=4x+16 | | 2x-16+2x=8x | | 9(n/5)=9/n/5 | | X+6=20x+7 | | 8x+5-9+6×-1=6×-3×+5+2 | | 7(x+9)=7(x-4) | | n^2=-9n-18 | | -h7/7.8=2 | | -2(6x-3)=78 | | 5x+25(20+x)=1870 | | 130=37.75+0.25x | | 26-7w=21+1w | | 3m+5+2m+3=66 | | 2/3h+-1/3h+11=8 | | 2x+28+8+x+15=15 | | 4X2^-x=0.12 | | 12x^2=-129 | | 5y-y3=12 | | 9-23=x+25 | | 5(1+3n)=80 | | 10=3(p-5)+8 | | 14m+26=35m+19 | | -2/3=5/3p | | y2+16-20=0 | | 65-x=75-2x |

Equations solver categories