14x+17=2(x+3)(x+3)-5

Simple and best practice solution for 14x+17=2(x+3)(x+3)-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 14x+17=2(x+3)(x+3)-5 equation:



14x+17=2(x+3)(x+3)-5
We move all terms to the left:
14x+17-(2(x+3)(x+3)-5)=0
We multiply parentheses ..
-(2(+x^2+3x+3x+9)-5)+14x+17=0
We calculate terms in parentheses: -(2(+x^2+3x+3x+9)-5), so:
2(+x^2+3x+3x+9)-5
We multiply parentheses
2x^2+6x+6x+18-5
We add all the numbers together, and all the variables
2x^2+12x+13
Back to the equation:
-(2x^2+12x+13)
We add all the numbers together, and all the variables
14x-(2x^2+12x+13)+17=0
We get rid of parentheses
-2x^2+14x-12x-13+17=0
We add all the numbers together, and all the variables
-2x^2+2x+4=0
a = -2; b = 2; c = +4;
Δ = b2-4ac
Δ = 22-4·(-2)·4
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{36}=6$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-6}{2*-2}=\frac{-8}{-4} =+2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+6}{2*-2}=\frac{4}{-4} =-1 $

See similar equations:

| 6u+12=-6 | | 8-(-3x+1)=-23(x+1) | | 5x+17=4x+16 | | 2x-16+2x=8x | | 9(n/5)=9/n/5 | | X+6=20x+7 | | 8x+5-9+6×-1=6×-3×+5+2 | | 7(x+9)=7(x-4) | | n^2=-9n-18 | | -h7/7.8=2 | | -2(6x-3)=78 | | 5x+25(20+x)=1870 | | 130=37.75+0.25x | | 26-7w=21+1w | | 3m+5+2m+3=66 | | 2/3h+-1/3h+11=8 | | 2x+28+8+x+15=15 | | 4X2^-x=0.12 | | 12x^2=-129 | | 5y-y3=12 | | 9-23=x+25 | | 5(1+3n)=80 | | 10=3(p-5)+8 | | 14m+26=35m+19 | | -2/3=5/3p | | y2+16-20=0 | | 65-x=75-2x | | -2(1/4x+2)=5 | | y-(-4.5)=6.8 | | 10=(p-5)+8 | | 3x^+x-2=0 | | -2/3w=-8 |

Equations solver categories