If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3b^2+3b+90=0
a = -3; b = 3; c = +90;
Δ = b2-4ac
Δ = 32-4·(-3)·90
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-33}{2*-3}=\frac{-36}{-6} =+6 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+33}{2*-3}=\frac{30}{-6} =-5 $
| 5x+34=87 | | 3x−9=3(x+2) | | -8+7x=7+8x+2x | | 0.3c=8.82+0.9c | | 2/5(2-5x)=x | | –24=–8(q–1) | | 2(2b+9)=14 | | (6x-2)+(11x-9)+72=180 | | -3b+0.4=-3(b+0.4 | | 12r-85=-52 | | k/2+8=28 | | 40=30r | | 1.2c=8.82 | | 8/3x+1/3x=5/1/3x+7/3x | | -8x-35=136 | | -4(x+8)=-6(2x-12) | | 10-4(w+9)=22 | | 0.4(5x-15)=2.5x+3) | | 8+5(1+6m)=133 | | 5=12m+3 | | 9h=12+8h | | -6x-1=83 | | 9(n+3)-25=65 | | 81n2-16=0 | | 8,3x+1,3x=5,1,3x+7,3x | | 5x+102=12+(7x+12) | | 4x+6=112 | | 2-c=-6c+1 | | -7p+12=-8p+3 | | 2-5(x-3)/8=7 | | (17x-23)=(7x+2)+(7x+2) | | -15y+11+19y=-y-19 |