-3/5x+1/2=3/10x

Simple and best practice solution for -3/5x+1/2=3/10x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3/5x+1/2=3/10x equation:



-3/5x+1/2=3/10x
We move all terms to the left:
-3/5x+1/2-(3/10x)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 10x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-3/5x-(+3/10x)+1/2=0
We get rid of parentheses
-3/5x-3/10x+1/2=0
We calculate fractions
50x^2/200x^2+(-120x)/200x^2+(-60x)/200x^2=0
We multiply all the terms by the denominator
50x^2+(-120x)+(-60x)=0
We get rid of parentheses
50x^2-120x-60x=0
We add all the numbers together, and all the variables
50x^2-180x=0
a = 50; b = -180; c = 0;
Δ = b2-4ac
Δ = -1802-4·50·0
Δ = 32400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{32400}=180$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-180)-180}{2*50}=\frac{0}{100} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-180)+180}{2*50}=\frac{360}{100} =3+3/5 $

See similar equations:

| -40-7x≥-8(x=5) | | 2y-2=3y-11+3y-11 | | 3(x+1)=1+3x+1 | | -2+7x=7x-2 | | 1/2(4x+2)=x-15 | | 15w-9w=54 | | (2)3.14r=13 | | 22+y=50 | | 0.8x-16=1.2x-18 | | (6h+7)+8=-19 | | 4x=5x-19 | | 0=x+15 | | -3(3x+3)=3 | | 15u^2+4u-3=0 | | 2=-y/11 | | 4x^2-12(0)+9=0 | | 2(x+4)=8x-10 | | y-18=-46 | | 23x-35=90 | | -28=3w-7 | | 2x-11(10x-1)=11(1-10x) | | 9x+16-2x=79 | | 3=c+4-13 | | 61-v=262 | | 14-2(-3x)=20 | | 6(4v-5)=-2(11v-8) | | -49+p=1 | | 4x-2(x-3)+1=9-7(x-1) | | (6x-26)=4x | | 20=23-p | | 5x^2+12=7x | | 3=r+6 |

Equations solver categories