-3/4p+3=1.25p-2

Simple and best practice solution for -3/4p+3=1.25p-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3/4p+3=1.25p-2 equation:



-3/4p+3=1.25p-2
We move all terms to the left:
-3/4p+3-(1.25p-2)=0
Domain of the equation: 4p!=0
p!=0/4
p!=0
p∈R
We get rid of parentheses
-3/4p-1.25p+2+3=0
We multiply all the terms by the denominator
-(1.25p)*4p+2*4p+3*4p-3=0
We add all the numbers together, and all the variables
-(+1.25p)*4p+2*4p+3*4p-3=0
We multiply parentheses
-4p^2+2*4p+3*4p-3=0
Wy multiply elements
-4p^2+8p+12p-3=0
We add all the numbers together, and all the variables
-4p^2+20p-3=0
a = -4; b = 20; c = -3;
Δ = b2-4ac
Δ = 202-4·(-4)·(-3)
Δ = 352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{352}=\sqrt{16*22}=\sqrt{16}*\sqrt{22}=4\sqrt{22}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{22}}{2*-4}=\frac{-20-4\sqrt{22}}{-8} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{22}}{2*-4}=\frac{-20+4\sqrt{22}}{-8} $

See similar equations:

| 12-5x=4x-6 | | -7p+4=10p-14 | | 0=-18+a | | 18=a/2 | | 7x+4(x-7)= | | 4x+x=325 | | 11+x15=-4 | | 2a-3=5a+9 | | m-18m+2m+-2=13 | | 5x-30+2x-20=180 | | 33+108+(c-23)=180 | | 3a8-2=(2a+9)/5 | | (10/5x-7)=(15/5x-3) | | 5x-30=2x-20 | | –4z=–3z−7 | | -10+8x=M(5-4x) | | -1-7x30=-4 | | 106=2(-6p+5) | | 3(2x+4)-8=34 | | -17x=24 | | 5x+15=40-5x | | 8x+1-3x-11=40 | | 64+(u+5)=180 | | 1/2(d+24)=5/2(2d-6) | | 6h=–9+7h | | 2x+3-5=-4 | | |3x-8|=-27 | | 2x+2=176 | | 3x=6x+5 | | 3(2x+5)-2(5x-2)=13 | | -4x+1-3x=29 | | 3(2x+4)-8=32 |

Equations solver categories