-3/2y-3/2=2/5y-2

Simple and best practice solution for -3/2y-3/2=2/5y-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3/2y-3/2=2/5y-2 equation:



-3/2y-3/2=2/5y-2
We move all terms to the left:
-3/2y-3/2-(2/5y-2)=0
Domain of the equation: 2y!=0
y!=0/2
y!=0
y∈R
Domain of the equation: 5y-2)!=0
y∈R
We get rid of parentheses
-3/2y-2/5y+2-3/2=0
We calculate fractions
(-15y)/40y^2+(-16y)/40y^2+(-15y)/40y^2+2=0
We multiply all the terms by the denominator
(-15y)+(-16y)+(-15y)+2*40y^2=0
Wy multiply elements
80y^2+(-15y)+(-16y)+(-15y)=0
We get rid of parentheses
80y^2-15y-16y-15y=0
We add all the numbers together, and all the variables
80y^2-46y=0
a = 80; b = -46; c = 0;
Δ = b2-4ac
Δ = -462-4·80·0
Δ = 2116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2116}=46$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-46)-46}{2*80}=\frac{0}{160} =0 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-46)+46}{2*80}=\frac{92}{160} =23/40 $

See similar equations:

| 3x+13x=36 | | 25z-35=321 | | 32/u=2 | | 25/x=321 | | 3/4=w-4/2 | | y=-3^2-(-3)-2 | | 2/x=30/x-2 | | -1/5+1/5v=-1/2 | | 108x^2+33x-30=0 | | 4x+13=5x+7 | | G(t)=2t | | 15x-(7.5x+550)=0 | | -9=-8w+5(w+3) | | ?x?x?=343 | | -4x+43=5(x-4) | | 6(3n+1)-4n=-2(n-5) | | 12w=9w+6 | | 2x+10x-3=100 | | 3u+4u=28 | | 7^3x=10000 | | 24x-22=6(4x-3)-4 | | 6w^2=7w-2 | | 20–x=2(x+4) | | 259=11-w | | 5m-5=45 | | 24/x=18 | | 4/3s-3=s+1/2-1/3s | | 20-18=x | | 42=35+x | | 50=5/r | | v-26=6 | | 18x-3=100 |

Equations solver categories