-3(6y-8)-y=-3y(y-2)

Simple and best practice solution for -3(6y-8)-y=-3y(y-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3(6y-8)-y=-3y(y-2) equation:



-3(6y-8)-y=-3y(y-2)
We move all terms to the left:
-3(6y-8)-y-(-3y(y-2))=0
We add all the numbers together, and all the variables
-1y-3(6y-8)-(-3y(y-2))=0
We multiply parentheses
-1y-18y-(-3y(y-2))+24=0
We calculate terms in parentheses: -(-3y(y-2)), so:
-3y(y-2)
We multiply parentheses
-3y^2+6y
Back to the equation:
-(-3y^2+6y)
We add all the numbers together, and all the variables
-(-3y^2+6y)-19y+24=0
We get rid of parentheses
3y^2-6y-19y+24=0
We add all the numbers together, and all the variables
3y^2-25y+24=0
a = 3; b = -25; c = +24;
Δ = b2-4ac
Δ = -252-4·3·24
Δ = 337
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-\sqrt{337}}{2*3}=\frac{25-\sqrt{337}}{6} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+\sqrt{337}}{2*3}=\frac{25+\sqrt{337}}{6} $

See similar equations:

| x=(x+2)²-4²+(-2x)²-(5x+2)(x-5) | | 3(2x+7)-12(4x-36)=159 | | 5p+2=p+10 | | e/3=20 | | b-38=9 | | -4.5+p/6=-18.9 | | 7x+72=49 | | 2x=x2+7x-22 | | c+17=40 | | 30=3t/5+5 | | 25x+40x=4 | | 4/x-4=2/2x-5 | | 37x+6=6(6x+7) | | 4=x2+7x-22 | | 7n-1=6n+6+4+6 | | 752+20x/44+x=18 | | 4(x)=x2+7x-22 | | 105+80+75+x=360 | | 9x^2=-25 | | -14.6=-3.4+w/7 | | 4v+2=5v-6 | | h(2)=2+2 | | x+4=3/2(2-x) | | x^2-16x-560=0 | | h(3)=3+2 | | -3.2-6x=4.0 | | h(1)=1+2 | | 4x+6+6x+6=146 | | h(0)=0+2 | | h(-2)=-2+2 | | 2x+41+7x+40=180 | | 12.y=5 |

Equations solver categories