-3(2y+3)-17=-4(y+8)2y

Simple and best practice solution for -3(2y+3)-17=-4(y+8)2y equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3(2y+3)-17=-4(y+8)2y equation:



-3(2y+3)-17=-4(y+8)2y
We move all terms to the left:
-3(2y+3)-17-(-4(y+8)2y)=0
We multiply parentheses
-6y-(-4(y+8)2y)-9-17=0
We calculate terms in parentheses: -(-4(y+8)2y), so:
-4(y+8)2y
We multiply parentheses
-8y^2-64y
Back to the equation:
-(-8y^2-64y)
We add all the numbers together, and all the variables
-(-8y^2-64y)-6y-26=0
We get rid of parentheses
8y^2+64y-6y-26=0
We add all the numbers together, and all the variables
8y^2+58y-26=0
a = 8; b = 58; c = -26;
Δ = b2-4ac
Δ = 582-4·8·(-26)
Δ = 4196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4196}=\sqrt{4*1049}=\sqrt{4}*\sqrt{1049}=2\sqrt{1049}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(58)-2\sqrt{1049}}{2*8}=\frac{-58-2\sqrt{1049}}{16} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(58)+2\sqrt{1049}}{2*8}=\frac{-58+2\sqrt{1049}}{16} $

See similar equations:

| 12q+1=12 | | 4(2y+1)-2=-4 | | 112q+1=12 | | 1/14(n-2)=2/7(n+9)-1/7n | | -1/3-5y=9 | | 9u-30=15u-6 | | 12(q+1)=12 | | 3q+36=12 | | 2+10h=7h+2 | | 12b+5=17 | | -6y+3=-5y | | -6h-9=-13-4h | | 3x+5/4=4x+5/4 | | 4y-26=12+3y | | 2(a+9)=18 | | 7(2+v)+38v=13v | | 12h-3-10h=7 | | 3x-140=940 | | 3w-2w+7=22-6 | | 6d+1=1 | | 2x-1/5=2 | | 4x²-4x+5=0 | | -34x=13,770 | | 32/7(3+2a)=10/7 | | -2+14-19=x | | (2^x)+8=40 | | -2+14-10=x | | 2.5x=3.65 | | 8x+2(x-4)=5(x+1)-4 | | 12x-9x=8.7 | | у=4x^2-6x | | X+x+12+x+9/x=117 |

Equations solver categories