-3(-7x+4)-4x=1.5(-5x+8.6)2x

Simple and best practice solution for -3(-7x+4)-4x=1.5(-5x+8.6)2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3(-7x+4)-4x=1.5(-5x+8.6)2x equation:



-3(-7x+4)-4x=1.5(-5x+8.6)2x
We move all terms to the left:
-3(-7x+4)-4x-(1.5(-5x+8.6)2x)=0
We add all the numbers together, and all the variables
-4x-3(-7x+4)-(1.5(-5x+8.6)2x)=0
We multiply parentheses
-4x+21x-(1.5(-5x+8.6)2x)-12=0
We calculate terms in parentheses: -(1.5(-5x+8.6)2x), so:
1.5(-5x+8.6)2x
We multiply parentheses
-15x^2+25.8x
Back to the equation:
-(-15x^2+25.8x)
We add all the numbers together, and all the variables
-(-15x^2+25.8x)+17x-12=0
We get rid of parentheses
15x^2-25.8x+17x-12=0
We add all the numbers together, and all the variables
15x^2-8.8x-12=0
a = 15; b = -8.8; c = -12;
Δ = b2-4ac
Δ = -8.82-4·15·(-12)
Δ = 797.44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8.8)-\sqrt{797.44}}{2*15}=\frac{8.8-\sqrt{797.44}}{30} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8.8)+\sqrt{797.44}}{2*15}=\frac{8.8+\sqrt{797.44}}{30} $

See similar equations:

| 3x(4+x)6+15=48 | | 24-9x=-13x+8 | | 9=9x+9 | | S(x)=20,000-2,000x | | -3x(4+x)6+15=48 | | 5x+6.2=9.5-6x | | 52=9/5c+32 | | 7(8r+4)=28+8r | | 4n+3+2n-7=175 | | 4z/12=-8 | | 7x(4x-2)=10 | | -1/7(-49x-105)-3x=-49 | | -17=6(11x+3) | | 12x+4-8x=16 | | 5x=6.2=9.5=6x | | 8u-12=44 | | a+1a+6=36 | | 3x+3=2x+23 | | -144x(1-1)=0 | | 7(2b-6)=-10-2b | | 13=h/3+11 | | 3/15=5/b | | 2y/3=3y/5-4/3 | | 4=8+m/4 | | a+6=a+36 | | 3(x-5)+6x=3 | | 2x+62=5x+36 | | 25+5=25t-7 | | -0.2(1–x)=4(4+0.1x) | | 20x-10=2x+6 | | (3x-2)=19 | | 6z-19z+8z+5=0 |

Equations solver categories