If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2x^2-12x-9=0
a = -2; b = -12; c = -9;
Δ = b2-4ac
Δ = -122-4·(-2)·(-9)
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-6\sqrt{2}}{2*-2}=\frac{12-6\sqrt{2}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+6\sqrt{2}}{2*-2}=\frac{12+6\sqrt{2}}{-4} $
| v/7=3/17 | | 2(x+4)+4x=7 | | 14+n=-10 | | 50x+2+1=0 | | X/x+19=23 | | 6m^2-6=9m | | 2x-50+1=0 | | 6m^2-6=8m | | -2=w/9 | | 500/10x=300 | | 9d^-18d=0 | | 5x-40+3x+15=180 | | 0.6x=0.35x+1 | | 3(7+2x)-4=29 | | a-6=115 | | n+4=50 | | −2.8=w−4 | | 9a-2a=5a | | 21+6x-4=29 | | (x+1)²+(x-8)²=65 | | 5x-(2+4x)=-3 | | 2(x-5)^2=14 | | 5x^2-x-4=-9x | | 4|x+3|+6=50 | | 2x^2-1760x-800=0 | | 74+15x−32=45x | | -5(2y-2)-y=-2(y-4) | | 3x+5−5(x+1)=6x+7 | | 6(m-812)=642 | | 3(2+4x)-3=75 | | 598/n=26 | | 9+h=13 |