-2x(x+6)+3=-11+4(x+4)

Simple and best practice solution for -2x(x+6)+3=-11+4(x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2x(x+6)+3=-11+4(x+4) equation:



-2x(x+6)+3=-11+4(x+4)
We move all terms to the left:
-2x(x+6)+3-(-11+4(x+4))=0
We multiply parentheses
-2x^2-12x-(-11+4(x+4))+3=0
We calculate terms in parentheses: -(-11+4(x+4)), so:
-11+4(x+4)
determiningTheFunctionDomain 4(x+4)-11
We multiply parentheses
4x+16-11
We add all the numbers together, and all the variables
4x+5
Back to the equation:
-(4x+5)
We get rid of parentheses
-2x^2-12x-4x-5+3=0
We add all the numbers together, and all the variables
-2x^2-16x-2=0
a = -2; b = -16; c = -2;
Δ = b2-4ac
Δ = -162-4·(-2)·(-2)
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{15}}{2*-2}=\frac{16-4\sqrt{15}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{15}}{2*-2}=\frac{16+4\sqrt{15}}{-4} $

See similar equations:

| n^2-2=7 | | 32x-14=50 | | -9-3s=5s+9 | | 2•13x=4x+28 | | 2f+4=28 | | 8x-5=6x-9 | | 7r-2=6+8r | | b=-6-(-12)-(-31) | | 2(5x+9)=-6+14 | | 4(r+20)=380 | | 4(3m-2)=4(m+10) | | |2x-15|=-7 | | C=(4x+12) | | H=-2t^2+20t+6 | | 7=6k-(-10k+9) | | -3x-6=7x-14 | | 6(2/3x=125-10) | | O=i/8 | | -2+9+7w=-9+9w | | E=(3x+25) | | -15-3m=2(-2m-7) | | 4(2x-8)=2(2+3x) | | 7(k-2)-23=35-k | | 0=(2y-1)(8y-y) | | 8(2m+4)=10m+86 | | 5g+2{-3+5g}=1-g | | -3m+7=-2m-1 | | 8n+28=2n-32 | | (8x-4)3=180 | | 2.8c-5=4.9c+7.39 | | 3x+12=2x-6+4x | | 0.004x100=0.00x10^2 |

Equations solver categories