-2x(1-3x)=22-3(x-13)

Simple and best practice solution for -2x(1-3x)=22-3(x-13) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2x(1-3x)=22-3(x-13) equation:



-2x(1-3x)=22-3(x-13)
We move all terms to the left:
-2x(1-3x)-(22-3(x-13))=0
We add all the numbers together, and all the variables
-2x(-3x+1)-(22-3(x-13))=0
We multiply parentheses
6x^2-2x-(22-3(x-13))=0
We calculate terms in parentheses: -(22-3(x-13)), so:
22-3(x-13)
determiningTheFunctionDomain -3(x-13)+22
We multiply parentheses
-3x+39+22
We add all the numbers together, and all the variables
-3x+61
Back to the equation:
-(-3x+61)
We get rid of parentheses
6x^2-2x+3x-61=0
We add all the numbers together, and all the variables
6x^2+x-61=0
a = 6; b = 1; c = -61;
Δ = b2-4ac
Δ = 12-4·6·(-61)
Δ = 1465
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{1465}}{2*6}=\frac{-1-\sqrt{1465}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{1465}}{2*6}=\frac{-1+\sqrt{1465}}{12} $

See similar equations:

| 30=q+4.2 | | t-t+4t+3t-6t=6 | | k/4+11=k/2+8 | | 5-3u=-19 | | 2x+1+x+5=90 | | (6y+8)+(4y+7)=135 | | 12y-11y=10 | | 90+x=3x-30 | | 4b−3b=17 | | (6y+8)+(4y+7)=108 | | x/4-4=15 | | 5x+8+2x-3=145 | | 8x-15+3=52 | | 4z+78=11z+8 | | 4(3n-5)+5(5n+2)=2n+165 | | 2(v+1)-4v=3(2v-1)+8 | | 8z-5z=15 | | 7x+24∘=3x+92∘ | | 10w-10=5w | | -12.3=-0.41x | | 10m-8m=14 | | 59=-1+6x | | −16x+48=0 | | m/2+3=13 | | d/7-3/7=5/7 | | 50=3n+29 | | (5y+9)+(2y+8)=108 | | 16=1/12v | | 5q-2=33 | | 130+x=60+2x | | 5(3x-1)-8=62 | | 1/4(x-1)=16 |

Equations solver categories