If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2t^2+24t+128=0
a = -2; b = 24; c = +128;
Δ = b2-4ac
Δ = 242-4·(-2)·128
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-40}{2*-2}=\frac{-64}{-4} =+16 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+40}{2*-2}=\frac{16}{-4} =-4 $
| 2+x=126 | | 1500=1200x1.1^x | | 2x+8x=13-7 | | 5x(4+6)=56-32 | | 5x(4+6)=12 | | 5x(4+6)=50 | | 5x(4x+6)=41 | | 2=5/n | | Y=5-8x+2x^2 | | 94+x=80 | | -x+8/10=7 | | 4(9+x)-17=43 | | 4(9+x)-17=3 | | X^2+6.6x+10.89=0 | | Y=0.45x-7 | | 64=-u+288 | | 284-x=132 | | 6+4x5+10/(9x2)=0 | | 274=101-x | | (2x+10+30+50=180 | | O.15x-5=7.85 | | -5x+-20x+80=180 | | 8k^+7k-1=0 | | 1.68=1.512*n | | 7e=7.7 | | 35=11b+2 | | 26=7a-9 | | -2(a-6)=2(a-6) | | 1.23(x)=52 | | 4=20+3/z | | 2(y+1)=y+8+3y | | 9x-(3x-21)=69 |