If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2t(t-19)=16
We move all terms to the left:
-2t(t-19)-(16)=0
We multiply parentheses
-2t^2+38t-16=0
a = -2; b = 38; c = -16;
Δ = b2-4ac
Δ = 382-4·(-2)·(-16)
Δ = 1316
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1316}=\sqrt{4*329}=\sqrt{4}*\sqrt{329}=2\sqrt{329}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(38)-2\sqrt{329}}{2*-2}=\frac{-38-2\sqrt{329}}{-4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(38)+2\sqrt{329}}{2*-2}=\frac{-38+2\sqrt{329}}{-4} $
| X/4+2/5=x/2-1 | | 6/x+7=5/2x+13/3 | | -4(p-17)=-4 | | |x+3|=2.25 | | 15=2(q+4+3 | | 8(2x^+3=48 | | 4x–9=3x | | y6+5=13−y | | 2y+44=3y−4 | | Y=-x2-10x-9 | | 3(7y-13)=5(3-y)-y | | 15-1/2h=-3 | | 3^x+4=1/243 | | 8x-2=-25 | | 1+4x=-5x+7 | | 30=18/x | | 54=9y+9 | | 2x^2+84x+441=0 | | (10-27/x)1.1×=200 | | 62+x=x+122 | | -24=2w+2(w+2) | | 3(x-12)=x+6 | | 3(x-12)=x-6 | | 13-9=19-6+x | | -12=4(y-2)-2y | | -14=2(u+8)+8u | | x/3+12=x | | -x+268=84 | | 195=-w+136 | | 1-2(3-2x)=1-2(x-3) | | 219-v=67 | | 219-v=66 |