-243=-9x(10+x)

Simple and best practice solution for -243=-9x(10+x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -243=-9x(10+x) equation:



-243=-9x(10+x)
We move all terms to the left:
-243-(-9x(10+x))=0
We add all the numbers together, and all the variables
-(-9x(x+10))-243=0
We calculate terms in parentheses: -(-9x(x+10)), so:
-9x(x+10)
We multiply parentheses
-9x^2-90x
Back to the equation:
-(-9x^2-90x)
We get rid of parentheses
9x^2+90x-243=0
a = 9; b = 90; c = -243;
Δ = b2-4ac
Δ = 902-4·9·(-243)
Δ = 16848
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{16848}=\sqrt{1296*13}=\sqrt{1296}*\sqrt{13}=36\sqrt{13}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(90)-36\sqrt{13}}{2*9}=\frac{-90-36\sqrt{13}}{18} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(90)+36\sqrt{13}}{2*9}=\frac{-90+36\sqrt{13}}{18} $

See similar equations:

| -2z+3=7z-12 | | 0=1-3v+2 | | 3w+4=7w | | 243=-9x(10+x) | | (2x+12)=(3x-31) | | 1.2x7=8.4 | | 3g÷(-6)=5-g-10 | | 4x+10=3x+2 | | 1/2(3y+2)-5/8=3/4y | | 2g-1=g=6 | | 3/5x-4=11 | | 5x2−39x−8=0 | | 15y+48=78 | | 3.2x=20.8 | | *92r-3)-r=3(3r+2) | | 0=3/2x-3 | | 5(1-6v)=-145 | | 7x+0.9=21.9 | | -(x+9)=-17 | | 7p-5=6p+18 | | 5+3.24+t=13.80 | | 65=-3d+8 | | -3g=32 | | 25=7r-3 | | (6/x-4)=(-3/x+4)+(21/(x-4)(x+4)) | | 6=3/p-8(19) | | (2x+20)+(4x+20)+3x=180 | | 9(4-11n)+11n=-4(12n+1) | | -6(5n-2)=-138 | | 6x-8=3x-1 | | (3x-3)+(x-3)=(2x-1)+(2x-1)+(2x) | | (2x+10)=(3x+3) |

Equations solver categories