-2/10x+9=3/5x-9

Simple and best practice solution for -2/10x+9=3/5x-9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2/10x+9=3/5x-9 equation:



-2/10x+9=3/5x-9
We move all terms to the left:
-2/10x+9-(3/5x-9)=0
Domain of the equation: 10x!=0
x!=0/10
x!=0
x∈R
Domain of the equation: 5x-9)!=0
x∈R
We get rid of parentheses
-2/10x-3/5x+9+9=0
We calculate fractions
(-10x)/50x^2+(-30x)/50x^2+9+9=0
We add all the numbers together, and all the variables
(-10x)/50x^2+(-30x)/50x^2+18=0
We multiply all the terms by the denominator
(-10x)+(-30x)+18*50x^2=0
Wy multiply elements
900x^2+(-10x)+(-30x)=0
We get rid of parentheses
900x^2-10x-30x=0
We add all the numbers together, and all the variables
900x^2-40x=0
a = 900; b = -40; c = 0;
Δ = b2-4ac
Δ = -402-4·900·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1600}=40$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-40}{2*900}=\frac{0}{1800} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+40}{2*900}=\frac{80}{1800} =2/45 $

See similar equations:

| 6=7j | | 7j=6 | | j*7=6 | | 7+a=11 | | 19x+(14x-6)=51 | | -8x+7=2x+16 | | 5000+.06x=6500.04x | | .8x+72=x | | -0,5x+1=0,75x-17 | | 0.17b=5.10 | | 0,005x=4.90 | | X^2+7=7x | | (x+94)+(40+x)=128 | | (X-3)(x-4)=x2+4 | | (x+87)+(x+38)=101 | | 6+2u=6+2u+2 | | (x+36)+(x+60)=72 | | 3x+16+4x+14+5x-30=180 | | 6y+10=3y | | 8x-4=12x12 | | 6v^2−4v−1=0 | | (x+33)+(x+159)=174 | | 6v2−4v−1=0 | | Y=6x^2+84x+291 | | 14+5x=2x-10+7x | | (18x+12)+(2x+12)=164 | | x/7,6=10 | | 49(v+1)2−25=0 | | 9x+10-7x=6 | | 0.5(20x+16)=4(3x-2)+4 | | 7.9x-0.4=1.5(3x+1)-0.4x | | 2(3x-4)=2x+7 |

Equations solver categories