If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+64x+10=0
a = -16; b = 64; c = +10;
Δ = b2-4ac
Δ = 642-4·(-16)·10
Δ = 4736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4736}=\sqrt{64*74}=\sqrt{64}*\sqrt{74}=8\sqrt{74}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-8\sqrt{74}}{2*-16}=\frac{-64-8\sqrt{74}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+8\sqrt{74}}{2*-16}=\frac{-64+8\sqrt{74}}{-32} $
| (⅔)x-9=21 | | 3+b=6.4 | | 21+12b=25 | | 8x32=90 | | a2+4=4 | | –9x=288 | | –9t=288 | | a2+64=100 | | Sx5-44=91 | | 7+x=-3x-2 | | 3(-k=6)/8=6 | | a2+4900=1764 | | -12x-8=88 | | -3x+5x-8=14 | | 5/6=-2/5x-2/3 | | Y/5=x+25 | | a2+16=81 | | -2/5x-2/3=5/6 | | x-16=(2x-10)+1 | | −3y+10=31 | | a2+729=2025 | | t=48=75 | | a2+64=25 | | 2k–5=5k= | | 2x+x+4(-x)=2(x+6) | | 6(x+4)+1=0 | | x^2-4+12=6x-2 | | 4j-10=10 | | X²+60x+800=0 | | 331/4*w=532 | | 2x−9=15−1x | | 2x2+x-16=3x+8 |