If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+6400=0
a = -16; b = 0; c = +6400;
Δ = b2-4ac
Δ = 02-4·(-16)·6400
Δ = 409600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{409600}=640$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-640}{2*-16}=\frac{-640}{-32} =+20 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+640}{2*-16}=\frac{640}{-32} =-20 $
| 25=8(u-5)+5u | | 5a-7=2a+1 | | F(3x+5)=6x-1 | | 6(5x-1)-(30x-7)=9 | | 4x^2+14=35x | | -4(2-y)+3y=3(y-3) | | 37-x=281 | | 1x+0+3=0 | | 21+x^2=57 | | 0.08x+0.06(231-x)=33 | | 5(8x-5)+3x=-4 | | 6(4x+6)=-9x | | 3(6-2x)+4(5x+-1)=0 | | 8x(x-2)=4x-10 | | 16^(-x-5)=32 | | 2a-3=52a | | 0.5x^2=-6x+20 | | 6p+7=2p-5 | | 3x+2x+x=-120 | | 0.80+0.80=x | | x-0.80=0 | | 0=0+0y+3 | | x+0.80=0 | | 0=-4+0y+3 | | 216=1+7(1+8m) | | 1.025^(2x)=2 | | 0=-5+0y+3 | | 1.025^2x=2 | | 75x-40=360 | | 0=-5+0y-3 | | -10+5x=5(x-3)+3 | | 1/2x-17=13 |